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Equations for calculating the temperature field in a spherical particle during 
convective drying in a gaseous medium with variable parameters are derived. 

Recently, dryers operating in forced hydrodynamic modes according to principle of stream 
whirling are used more widely in the chemical industry mainly for the drying of materials 
with surface moisture. The short period of time such a material remains in the dryer cham- 
ber and the relatively high velocities of the interacting streams make it feasible to ap- 
preciably intensify the drying process and to raise the temperature of the drying agent. 
These advantages have been fully realized in the compound dryers [1-3] developed at the 
Chair of Processes and Apparatus at the Ivanovo Institute of Chemical Technology and have 
already been operating successfully in the industry for several years. 

An important step in the determination of the optimum performance parameters and in 
the design of the apparatus is calculation of the temperature field in a particle moving 
through a gaseous medium with a variable temperature. The solution to analogous problems 
in the case of pure heat transfer is well known [4, 5]. In this study the problem of heat 
transfer involving a spherical particle in a gas stream with a variable temperature, as well 
as mass transfer, will be solved. 

In the calculation of drying processes one usually assumes that during evaporation of 
the surface moisture the temperature of a particle is equal to the temperature of adiabatic 
air saturation. This assumption is correct in most cases. In the case of high-intensity 
drying, however, the balance of heat supplied to a particle and removed from it together 
with the stream of moisture can become disturbed. When the amount of heat supplied exceeds 
the amount removed with evaporated moisture, then a temperature gradient appears in the par- 
ticle: the surface temperature rises and this causes the motive force of the evaporation 
process to increase. If we regard the drying of a disperse material in a compound apparatus 
as a quasisteady process, we have, for the temperature field in a single particle in a medium 

with a variable temperature, the boundary-value problem 
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We change variables in Eqs. 

Then the boundary-value problem becomes 
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With the aid of Duhamel's theorem [4, 
tions (7)-(10) as 

T (r, ~) = ~ (~) ,  (r, O) + STa (0) ~ T  

0 

where ~(r, T) is the solution to the problem for T a= i. 

Applying the Laplace integral transformation [6] to Eqs. 

tion ,(r, T) 

(r, s) = 

6], we write the solution to the system of equa- 

a~b (r, "~ - -  O) dO, 
( l l )  

(7)-(10) yields for the func- 
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In d i m e n s i o n l e s s  form e x p r e s s i o n  (15) becomes 

NFo 

T(r,NFc~=:I__~A ~ sin[%_r r [  1 --~S 
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(14) 

a ( , - - 0 )  dO}. R ~ ] (15) 

T a (nr*) exp (--F~NFo,~) dN~o ] �9 (16) 

Expressions (15) and (16) yield the temperature field in a particle dried by a stream 
of a heat carrier whose temperature is a function of time. 

It has been said earlier that drying in a whirled high-velocity stream occurs at a high 
intensity, with the material remaining in the dryer chamber for a short period of time only. 
Meanwhile, it is also well known [6] that the convergence of the infinite series in expres- 
sions (15) and (16) becomes worse as T decreases. This creates difficulties in the calcula- 
tion, inasmuch as a large number of terms in the series must be retained. Here we will 
obtain s solution convenient for small values of the Fourier nu~er. 

Considering that NFo*0, while sinh x~cosh x ~0~ x, we transform expression (12) to 

A c h a n g e o v e r  to  the  domain of  o r i g i n a l s  w i t h  the  a id  of  t a b l e s  of  i n t e g r a l  t r a n s f o r m s  
[6] y i e l d s  

Nm ferfc 1 - -  r(NBi--1) / 2 ~ o  exp[(NBi--1)2NFo@(NBi--1)(1--7)]X 
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Using again Duhamel's theorem, we obtain an expression for the temperature field in a 
particle during a short drying period 
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with function ~1(r, NFo,m) calculated as 
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The solution simplifies greatly for NBi = i" 

Fo 
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Nm= o 4NF~ 4--~F~ ] NV~F~ " 

With the express ions  (15), (16), and (19) - (21) ,  t h e r e f o r e ,  one can c a l c u l a t e  the  tem- 
pe ra tu re  field in a particle during convective drying while the temperature of the gas 
stream varies. We note here that the problem has been solved without any constraints on 
the function Ta(T) (except the condition that it as well as its derivative must be piecewise- 
continuous on the interval of integration). This is very important to note, because the 
solution obtained here can thus be extended to the more general case where the ratios of 
heat transfer and mass transfer coefficients as well as the latent heat of evaporation and 
the motive force in the drying process vary in time. Accordingly, expressions (15), (16), 
and (19)-(21) are also valid when the function T(r, NFo) is defined as 

l (r ,  T ) - - t  o (22) 
T {r, NFo)= ta(T ) __ m (~) AP(~) r* (,) -- to 

A s imultaneous so lu t i on  of Eqs. (16) and (19)-(21)  wi th  the  equa t ions  of motion for  a 
stream of a gaseous dispersion in a dryer chamber will produce the complete pattern of the 
dynamics of the temperature field in a particle along its entire trajectory so that the 
drying time and the moisture content in the material at the exit from the dryer can be 
determined. The proposed method of calculating the temperature field in a particle has 
been successfully used, together with the model [7, 8] of the aerodynamics of 2-phase 
streams in a cyclone chamber, for the design of the industrial 2-stage cyclone drying 
process. 

866 



NOTATION 

t(r, T), a function defining the temperature field in a particle; ta, temperature of 
the ambient medium; to, initial temperature of a particle; R, radius of a particle; r, 
radius at any point in the particle; a, thermal diffusivity of a particle; a, heat-transfer 
coefficient; 9, mass transfer coefficient; %, thermal conductivity of the particle material; 
AP, motive force in the drying process; T, time; 8, time at any instant on the interval [0, 
T]; NBi=~R/~, Biot number; NFo=aT~R~, Fourier number; NFo*=aO/R 2, instantaneous Fourier 
number; NFo =NFo -- NFo* ; m= ~/a; T(r, NFo ) =T(r, T)/Ta(T) , Ta(NFo*) =Ta(@)/Ta(T). 
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